Math 31 - Homework 3 Solutions

1. Let D4 be the 4th dihedral group, which consists of symmetries of the square. Let r € D,
denote counterclockwise rotation by 90°, and let m denote reflection across the vertical axis.

4 3 3 2
r
R ——
1 2 4 1
4 3 3 4
m
_—
1 2 2 1
Check that
rm = mr L.

Conclude that Dy is a nonabelian group of order 8.
Solution. It is probably simplest to just draw pictures that illustrate the effect of rm and mr—! on

the square. First we have:

4 3 3 4 4 1

1 2 2 1 3 2

Thus rm corresponds to reflection across the diagonal through vertices 2 and 4. On the other hand:

4 3 1 4 4 1

1 2 2 3 3 2

Thus mr~! is the same transformation, and we have shown that rm = mr~'. In particular, r and
m do not commute, so Dy is nonabelian. We already saw in class that Dy is a group and that its
order is 2 -4 = 8.



2. We mentioned in class that elements of D, can be thought of as permutations of the vertices
of the regular n-gon. For example, the rotation r of the square mentioned in the last problem can
be identified with the permutation
(1 2 3 4
P=\2 34 1)

Write the reflection m as a permutation p € Sy, and compute the product py in S4. Then compute
rm € Dy, and write it as a permutation o. Check that o = pu. (In other words, this identification
of symmetries of the square with permutations respects the group operations.)

Solution. In the previous problem we saw that m is given by

4 3 3 4

1 2 2 1

Thus the permutation p will have to send 1 to 2, 2 to 1, 3 to 4, and 4 to 3. In other words,

(12 3 4
F=\a2 14 3 )"

As elements of S; we then have
B 1 2 3 4 12 3 4\ 1 2 3 4
PE=\ 2 3 4 1 2 143) " \3214)

Now recall from Problem 2 that if we multiply » and m in Dy, we obtain the reflection across the
diagonal through vertices 2 and 4:

4 3 4 1

rm

1 2 3 2

The permutation o corresponding to this transformation will have to send 1 to 3 and leave 2 and
4 unchanged. In other words,
o ( 1 2 3 4 )
3 21 4)°

This is precisely the permutation pu, so indeed o = pu. We will see later that we can identify Dy
with a proper subgroup of S4, and that this identification preserves the group operations. This
exercise is a specific example of this phenomenon.



3. Recall that if * is a binary operation on a set S, an element z of S is an idempotent if
x * x = z. Prove that a group has exactly one idempotent element.
Proof. Let GG be a group and suppose that a € G is an idempotent. Then

a’ = a = ae,

and the left cancellation law implies that
a=e.

Therefore, the only idempotent in G is the identity element e, and G has exactly one idempotent. [

4. Consider the group (Zsp, +30) under addition.
(a) Find the orders of the elements 3, 4, 6, 7, and 18 in Zso.
(b) Find all the generators of (Zsg, +30).
Solution. (a) We saw in class that if a € Zgg, then o(a) = 30/ ged(a, 30). Therefore,

0(3) =30/3 =10
o(4) =30/2=15
0(6) =30/6=5
o(7) = 30/1 = 30
0(18) =30/6 = 5

(b) The generators of Zsg are precisely the elements of order 30. These are exactly the elements
a € Zsp for which ged(a,30) = 1. Therefore, the generators are

1,7,11,13,17,19,23, and 29.

6. [Saracino, Section 4, #25] Show that if G is a finite group and |G| is even, then there is an
element a € G such that a # e and a? = e.

Proof. Define S C G by
S:{aEG:a;&a_l}.

Note that S is a proper subset of G, since e € S. Since (a=!)~! = a for all a € G, we can conclude
that a € S if and only if = € S. Thus we can pair up the elements of S with their inverses:

—1 -1 -1
S:{al,al 02,0y 4. ..,0n, 0y, }

We can then see that S has an even number of elements, say 2n. If |G| = 2m, then n < m and the

number of elements a € G with the property that a = a~ ! is

2m —2n = 2(m —n).

In particular, an even number of elements in G are equal to their own inverses. Since e = e~ !,

there must be at least one other element a € G with a = a~ 1. O



7. [Saracino, Section 4, #21] Let a and b be elements of a group G. Show that if ab has finite
order n, then ba also has order n.

Proof. Suppose that ab has order n, so that n is the smallest positive integer for which

(ab)™ = e.

Note that
(ab)™ = abab - - - ab = a(ba)" " 1b,
—

n times

S0
(ba)" P =a M ab)"b ' =ateb = a7 b = (ba) 7L

That is,

(ba)" = (ba)(ba)" " = (ba)(ba)™! = e.

Therefore, we know that (ba)™ = e, and we just need to see that n is the smallest such positive
integer. Suppose that 0 < m < n and (ba)™ = e. Then the same computations that we have just
done show that

(ab)™ = e,
which is impossible since |ab| = n. Therefore, n must be the smallest positive integer for which

(ba)™ = e, i.e., |bal] = n. O

8. [Saracino, Section 4, #20] Let G be a group and let a € G. An element b € G is called a
conjugate of a if there exists an element 2 € G such that b = zaz~!'. Show that any conjugate of
a has the same order as a.

Proof. Let a,x € G, and put b = zax~!. Suppose first that a has finite order n. Then

b = (zax™H)" = (zaz V) (zaz ™) - (zaz™l) = zd"z T =zer =2zl = ¢,

n times

since a has order n. Thus " = e, so o(b) < n = o(a). On the other hand, let m = o(b). Note that
a=xz"tbz, so
a™ = (z7 )" =27 =2 e =e.

Thus o(a) < m = o(b). We must then have o(a) = o(b).

Now suppose that a has infinite order. Then o™ # e for all n € Z. Suppose that b does not have
infinite order, so there is some integer m such that " = e. Then the computations above show
that @™ = e as well, contradicting the fact that a has infinite order. Therefore, b must also have
infinite order. O



