
Math 31 - Homework 3 Solutions

1. Let D4 be the 4th dihedral group, which consists of symmetries of the square. Let r ∈ D4

denote counterclockwise rotation by 90◦, and let m denote reflection across the vertical axis.
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Check that
rm = mr−1.

Conclude that D4 is a nonabelian group of order 8.

Solution. It is probably simplest to just draw pictures that illustrate the effect of rm and mr−1 on
the square. First we have:
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Thus rm corresponds to reflection across the diagonal through vertices 2 and 4. On the other hand:
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Thus mr−1 is the same transformation, and we have shown that rm = mr−1. In particular, r and
m do not commute, so D4 is nonabelian. We already saw in class that D4 is a group and that its
order is 2 · 4 = 8.

1



2. We mentioned in class that elements of Dn can be thought of as permutations of the vertices
of the regular n-gon. For example, the rotation r of the square mentioned in the last problem can
be identified with the permutation

ρ =

(
1 2 3 4
2 3 4 1

)
.

Write the reflection m as a permutation µ ∈ S4, and compute the product ρµ in S4. Then compute
rm ∈ D4, and write it as a permutation σ. Check that σ = ρµ. (In other words, this identification
of symmetries of the square with permutations respects the group operations.)

Solution. In the previous problem we saw that m is given by
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Thus the permutation µ will have to send 1 to 2, 2 to 1, 3 to 4, and 4 to 3. In other words,

µ =

(
1 2 3 4
2 1 4 3

)
.

As elements of S4 we then have

ρµ =

(
1 2 3 4
2 3 4 1

)(
1 2 3 4
2 1 4 3

)
=

(
1 2 3 4
3 2 1 4

)
.

Now recall from Problem 2 that if we multiply r and m in D4, we obtain the reflection across the
diagonal through vertices 2 and 4:
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The permutation σ corresponding to this transformation will have to send 1 to 3 and leave 2 and
4 unchanged. In other words,

σ =

(
1 2 3 4
3 2 1 4

)
.

This is precisely the permutation ρµ, so indeed σ = ρµ. We will see later that we can identify D4

with a proper subgroup of S4, and that this identification preserves the group operations. This
exercise is a specific example of this phenomenon.
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3. Recall that if ∗ is a binary operation on a set S, an element x of S is an idempotent if
x ∗ x = x. Prove that a group has exactly one idempotent element.

Proof. Let G be a group and suppose that a ∈ G is an idempotent. Then

a2 = a = ae,

and the left cancellation law implies that
a = e.

Therefore, the only idempotent inG is the identity element e, andG has exactly one idempotent.

4. Consider the group 〈Z30,+30〉 under addition.

(a) Find the orders of the elements 3, 4, 6, 7, and 18 in Z30.

(b) Find all the generators of 〈Z30,+30〉.

Solution. (a) We saw in class that if a ∈ Z30, then o(a) = 30/ gcd(a, 30). Therefore,

o(3) = 30/3 = 10

o(4) = 30/2 = 15

o(6) = 30/6 = 5

o(7) = 30/1 = 30

o(18) = 30/6 = 5

(b) The generators of Z30 are precisely the elements of order 30. These are exactly the elements
a ∈ Z30 for which gcd(a, 30) = 1. Therefore, the generators are

1, 7, 11, 13, 17, 19, 23, and 29.

6. [Saracino, Section 4, #25] Show that if G is a finite group and |G| is even, then there is an
element a ∈ G such that a 6= e and a2 = e.

Proof. Define S ⊆ G by
S =

{
a ∈ G : a 6= a−1

}
.

Note that S is a proper subset of G, since e 6∈ S. Since (a−1)−1 = a for all a ∈ G, we can conclude
that a ∈ S if and only if a−1 ∈ S. Thus we can pair up the elements of S with their inverses:

S =
{
a1, a

−1
1 , a2, a

−1
2 , . . . , an, a

−1
n

}
.

We can then see that S has an even number of elements, say 2n. If |G| = 2m, then n < m and the
number of elements a ∈ G with the property that a = a−1 is

2m− 2n = 2(m− n).

In particular, an even number of elements in G are equal to their own inverses. Since e = e−1,
there must be at least one other element a ∈ G with a = a−1.
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7. [Saracino, Section 4, #21] Let a and b be elements of a group G. Show that if ab has finite
order n, then ba also has order n.

Proof. Suppose that ab has order n, so that n is the smallest positive integer for which

(ab)n = e.

Note that
(ab)n = abab · · · ab︸ ︷︷ ︸

n times

= a(ba)n−1b,

so
(ba)n−1 = a−1(ab)nb−1 = a−1eb−1 = a−1b−1 = (ba)−1.

That is,
(ba)n = (ba)(ba)n−1 = (ba)(ba)−1 = e.

Therefore, we know that (ba)n = e, and we just need to see that n is the smallest such positive
integer. Suppose that 0 < m < n and (ba)m = e. Then the same computations that we have just
done show that

(ab)m = e,

which is impossible since |ab| = n. Therefore, n must be the smallest positive integer for which
(ba)n = e, i.e., |ba| = n.

8. [Saracino, Section 4, #20] Let G be a group and let a ∈ G. An element b ∈ G is called a
conjugate of a if there exists an element x ∈ G such that b = xax−1. Show that any conjugate of
a has the same order as a.

Proof. Let a, x ∈ G, and put b = xax−1. Suppose first that a has finite order n. Then

bn = (xax−1)n = (xax−1)(xax−1) · · · (xax−1)︸ ︷︷ ︸
n times

= xanx−1 = xex−1 = xx−1 = e,

since a has order n. Thus bn = e, so o(b) ≤ n = o(a). On the other hand, let m = o(b). Note that
a = x−1bx, so

am = (x−1bx)m = x−1bmx = x−1x = e.

Thus o(a) ≤ m = o(b). We must then have o(a) = o(b).
Now suppose that a has infinite order. Then an 6= e for all n ∈ Z. Suppose that b does not have

infinite order, so there is some integer m such that bm = e. Then the computations above show
that am = e as well, contradicting the fact that a has infinite order. Therefore, b must also have
infinite order.
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