Math 31 - Homework 3 Solutions

1. Let D_{4} be the 4 th dihedral group, which consists of symmetries of the square. Let $r \in D_{4}$ denote counterclockwise rotation by 90°, and let m denote reflection across the vertical axis.

Check that

$$
r m=m r^{-1}
$$

Conclude that D_{4} is a nonabelian group of order 8 .
Solution. It is probably simplest to just draw pictures that illustrate the effect of $r m$ and $m r^{-1}$ on the square. First we have:

Thus $r m$ corresponds to reflection across the diagonal through vertices 2 and 4. On the other hand:

Thus $m r^{-1}$ is the same transformation, and we have shown that $r m=m r^{-1}$. In particular, r and m do not commute, so D_{4} is nonabelian. We already saw in class that D_{4} is a group and that its order is $2 \cdot 4=8$.
2. We mentioned in class that elements of D_{n} can be thought of as permutations of the vertices of the regular n-gon. For example, the rotation r of the square mentioned in the last problem can be identified with the permutation

$$
\rho=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 1
\end{array}\right) .
$$

Write the reflection m as a permutation $\mu \in S_{4}$, and compute the product $\rho \mu$ in S_{4}. Then compute $r m \in D_{4}$, and write it as a permutation σ. Check that $\sigma=\rho \mu$. (In other words, this identification of symmetries of the square with permutations respects the group operations.)

Solution. In the previous problem we saw that m is given by

Thus the permutation μ will have to send 1 to 2 , 2 to 1,3 to 4 , and 4 to 3 . In other words,

$$
\mu=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 1 & 4 & 3
\end{array}\right)
$$

As elements of S_{4} we then have

$$
\rho \mu=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 1
\end{array}\right)\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 1 & 4 & 3
\end{array}\right)=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 2 & 1 & 4
\end{array}\right) .
$$

Now recall from Problem 2 that if we multiply r and m in D_{4}, we obtain the reflection across the diagonal through vertices 2 and 4:

The permutation σ corresponding to this transformation will have to send 1 to 3 and leave 2 and 4 unchanged. In other words,

$$
\sigma=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 2 & 1 & 4
\end{array}\right)
$$

This is precisely the permutation $\rho \mu$, so indeed $\sigma=\rho \mu$. We will see later that we can identify D_{4} with a proper subgroup of S_{4}, and that this identification preserves the group operations. This exercise is a specific example of this phenomenon.
3. Recall that if $*$ is a binary operation on a set S, an element x of S is an idempotent if $x * x=x$. Prove that a group has exactly one idempotent element.

Proof. Let G be a group and suppose that $a \in G$ is an idempotent. Then

$$
a^{2}=a=a e,
$$

and the left cancellation law implies that

$$
a=e
$$

Therefore, the only idempotent in G is the identity element e, and G has exactly one idempotent.
4. Consider the group $\left\langle\mathbb{Z}_{30},+_{30}\right\rangle$ under addition.
(a) Find the orders of the elements $3,4,6,7$, and 18 in \mathbb{Z}_{30}.
(b) Find all the generators of $\left\langle\mathbb{Z}_{30},+{ }_{30}\right\rangle$.

Solution. (a) We saw in class that if $a \in \mathbb{Z}_{30}$, then $o(a)=30 / \operatorname{gcd}(a, 30)$. Therefore,

$$
\begin{aligned}
o(3) & =30 / 3=10 \\
o(4) & =30 / 2=15 \\
o(6) & =30 / 6=5 \\
o(7) & =30 / 1=30 \\
o(18) & =30 / 6=5
\end{aligned}
$$

(b) The generators of \mathbb{Z}_{30} are precisely the elements of order 30 . These are exactly the elements $a \in \mathbb{Z}_{30}$ for which $\operatorname{gcd}(a, 30)=1$. Therefore, the generators are

$$
1,7,11,13,17,19,23 \text {, and } 29 .
$$

6. [Saracino, Section 4, \#25] Show that if G is a finite group and $|G|$ is even, then there is an element $a \in G$ such that $a \neq e$ and $a^{2}=e$.

Proof. Define $S \subseteq G$ by

$$
S=\left\{a \in G: a \neq a^{-1}\right\} .
$$

Note that S is a proper subset of G, since $e \notin S$. Since $\left(a^{-1}\right)^{-1}=a$ for all $a \in G$, we can conclude that $a \in S$ if and only if $a^{-1} \in S$. Thus we can pair up the elements of S with their inverses:

$$
S=\left\{a_{1}, a_{1}^{-1}, a_{2}, a_{2}^{-1}, \ldots, a_{n}, a_{n}^{-1}\right\} .
$$

We can then see that S has an even number of elements, say $2 n$. If $|G|=2 m$, then $n<m$ and the number of elements $a \in G$ with the property that $a=a^{-1}$ is

$$
2 m-2 n=2(m-n) .
$$

In particular, an even number of elements in G are equal to their own inverses. Since $e=e^{-1}$, there must be at least one other element $a \in G$ with $a=a^{-1}$.
7. [Saracino, Section 4, \#21] Let a and b be elements of a group G. Show that if $a b$ has finite order n, then $b a$ also has order n.

Proof. Suppose that $a b$ has order n, so that n is the smallest positive integer for which

$$
(a b)^{n}=e .
$$

Note that

$$
(a b)^{n}=\underbrace{a b a b \cdots a b}_{n \text { times }}=a(b a)^{n-1} b,
$$

so

$$
(b a)^{n-1}=a^{-1}(a b)^{n} b^{-1}=a^{-1} e b^{-1}=a^{-1} b^{-1}=(b a)^{-1} .
$$

That is,

$$
(b a)^{n}=(b a)(b a)^{n-1}=(b a)(b a)^{-1}=e .
$$

Therefore, we know that $(b a)^{n}=e$, and we just need to see that n is the smallest such positive integer. Suppose that $0<m<n$ and $(b a)^{m}=e$. Then the same computations that we have just done show that

$$
(a b)^{m}=e,
$$

which is impossible since $|a b|=n$. Therefore, n must be the smallest positive integer for which $(b a)^{n}=e$, i.e., $|b a|=n$.
8. [Saracino, Section 4, \#20] Let G be a group and let $a \in G$. An element $b \in G$ is called a conjugate of a if there exists an element $x \in G$ such that $b=x a x^{-1}$. Show that any conjugate of a has the same order as a.

Proof. Let $a, x \in G$, and put $b=x a x^{-1}$. Suppose first that a has finite order n. Then

$$
b^{n}=\left(x a x^{-1}\right)^{n}=\underbrace{\left(x a x^{-1}\right)\left(x a x^{-1}\right) \cdots\left(x a x^{-1}\right)}_{n \text { times }}=x a^{n} x^{-1}=x e x^{-1}=x x^{-1}=e,
$$

since a has order n. Thus $b^{n}=e$, so $o(b) \leq n=o(a)$. On the other hand, let $m=o(b)$. Note that $a=x^{-1} b x$, so

$$
a^{m}=\left(x^{-1} b x\right)^{m}=x^{-1} b^{m} x=x^{-1} x=e .
$$

Thus $o(a) \leq m=o(b)$. We must then have $o(a)=o(b)$.
Now suppose that a has infinite order. Then $a^{n} \neq e$ for all $n \in \mathbb{Z}$. Suppose that b does not have infinite order, so there is some integer m such that $b^{m}=e$. Then the computations above show that $a^{m}=e$ as well, contradicting the fact that a has infinite order. Therefore, b must also have infinite order.

